• ISSN 1003-3238
  • CN 10-1702/P

用于搜救的地震损坏建筑的内部模型

T. Bloch R. Sacks O. Rabinovitch 王佳源 赵爱华

引用本文:
Citation:

用于搜救的地震损坏建筑的内部模型

  • 摘要: 地震时如果搜救行动快速,困于倒塌建筑空间内的幸存者就有可能获救。为给搜救队提供指导性的建筑信息,最大程度地降低风险和加快行动,本文提出了一种新颖的计算方法:输入是震前建筑的"竣工"建筑信息建模(BIM)模型和根据地面激光扫描结果得到的震后外面部件的部分"损坏"BIM模型;在地震之前,生成大量的可能倒塌模式;地震之后,可迅速选出几何结构与"损坏"的外部BIM最相似的模式。本文详述了基于点距最小和算法及模态置信准则(MAC)算法的选择方法,并演示了在一系列的计算机模拟的倒塌结构模型上的应用,显示所提出方法的潜在可行性。
  • [1]

    M. Statheropoulos,A.Agapiou,G.C.Pallis,K.Mikedi,S.Karma,J.Vamvakari,et al.,Factors that affect rescue time in urban search and rescue (USAR)operations,Nat.Haz.75(2015)57-69.
    [2]

    H.Tiedemann,Earthquakes and Volcanic Eruptions:A Handbook on Risk Assessment,Swiss Re,Zurich,1992.
    [3]

    E.Kyriazis,A.Zisiadis,Technical Handbook for Search and Rescue Operations in Earthquakes,second ed.,European Centre on Prevention and Forecasting of Earthquakes; Earthquake Plan-ning and Protection Organisation,Ministry of Environment and Public Works,Athens,Greece,1999.
    [4]

    NDO,Disaster Rescue-Australian Emergency Ma-nual,Natural Disasters Organisation,Third,Pirie Printers Sales Pty Ltd,Canberra,ACT,1990.
    [5]

    C.Schweier,M.Markus,Assessment of the search and rescue demand for individual buil-dings,in:Proceedings of 13th World Conference on Earthquake Engineering,Vancouver,Canada,2004,p.11.
    [6]

    A.Kashani,P.Crawford,S.Biswas,A.Graet-tinger,D.Grau,Automated Tornado Damage Assessment and Wind Speed Estimation Based on Terrestrial Laser Scanning,J.Comput.Civil Eng.(2014).04014051.
    [7]

    R.Zeibak-Shini,R.Sacks,S.Filin,Toward generation of a building information model of a deformed structure using laser scanning technology,in:14th International Conference on Computational Civil Building Engineering,ICCCBE,Moscow,Rus-sia,2012.
    [8]

    M.Rehor,Classification of building damage based on laser scanning data,Photogram.J.Finl.20 (2007) 54-63.
    [9]

    A.Y.Chen,F.Peña-Mora,A.P.Plans,S.J.Mehta,Z.Aziz,Supporting urban search and rescue with digital assessments of structures and requests of response resources,Adv.Eng.Inf.26 (2012) 833-845.
    [10]

    E.Ergen,S.Sariel-Talay,G.Guven,G.Avdan,Local information access for search and rescue using wireless data storage mediums,J.Comput.Civil Eng.25 (2011) 263-274.
    [11]

    G.Guven,E.Ergen,Identification of local information items needed during search and rescue following an earthquake,Dis.Prevent.Manage.20 (2011)458-472.
    [12]

    A.G.Sextos,A.J.Kappos,K.C.Stylianidis,Computer-aided pre-and post-earthquake assessment of buildings involving database compilation,GIS visualization,and mobile data transmission,Comp.-Aided Civil Infrastruct. Eng.23 (2008) 59-73.
    [13]

    M.J.Olsen,F.Kuester,B.J.Chang,T.C.Hutchinson,Terrestrial laser scanning-based structural damage assessment,J.Comput.Civil Eng.24 (2010) 264-272.
    [14]

    J.A.Goulet,C.Michel,A.D.Kiureghian,Data-driven post-earthquake rapid structural safety assessment,Earthq.Eng.Struct.Dynam.44 (2015) 549-562.
    [15]

    J.-A.Goulet,I.F.C.Smith,Structural identification with systematic errors and unknown uncertainty dependencies,Comp.Struct.128 (2013) 251-258.
    [16]

    C.Schweier,M.Markus,Classification of collapsed buildings for fast damage and loss assessment,Bullet.Earthq.Eng.4 (2006) 177-192.
    [17]

    S.German,J.Jeon,Z.Zhu,C.Bearman,I.Brilakis,R.DesRoches,et al.,Machine vision-enhanced post-earthquake inspection,J.Comput.Civil Eng.27 (2013)622-634.
    [18]

    S.German,I.Brilakis,R.DesRoches,Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments,Adv.Eng.Inf.26 (2012) 846-858.
    [19]

    M.Torok,M.Golparvar-Fard,K.Kochersberger,Image-based automated 3D crack detection for post-disaster building assessment,J.Comput.Civil Eng.28 (2014) a4014004.
    [20]

    M.Markus,F.Fiedrich,J.Leebmann,C.Schweier,E.Steinle,Concept for an integrated disaster management tool,in:Proceedings of 13th World Conference on Earthquake Engineering,Canada,2004.
    [21]

    M.Statheropoulos,Second Generation Locator for Urban Search and Rescue Operations (SGL for USaR),2012.
    [22]

    J.Wong,C.Robinson,Urban Search and Rescue Technology Needs:Identification of Needs,Savannah River National Laboratory,Aiken,SC,2004.
    [23]

    K.-M.Chen,Y.Huang,J.Zhang,A.Norman,Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,IEEE Trans.Biomed.Eng.47 (2000) 105-114.
    [24]

    R.R.Murphy,S.Tadokoro,D.Nardi,A.Jacoff,P.Fiorini,H.Choset,et al.,Search and rescue robotics,in:B.Siciliano,O.Khatib (Eds.),Springer Handbook of Robotics,Springer,Berlin Heidelberg,2008,pp.1151-1173.
    [25]

    R.R.Murphy,Rescue robotics for homeland security,Commun.ACM 47 (2004)66-68.
    [26]

    C.M.Eastman,P.Teicholz,R.Sacks,K.Liston,B.I.M.Handbook,A Guide to Building Informa-tion Modeling for Owners,Managers,Archi-tects,Engineers,Contractors,and Fabricators,John Wiley and Sons,Hoboken,NJ,2011.
    [27]

    R.Zeibak-Shini,L.Ma,R.Sacks,Mapping the structural frame of a damaged reinforced concrete building using as-damaged scans and as-built BIM,in:TU Eindhoven,Eindhoven,Netherlands,2015:p.10.
    [28]

    L.Ma,R.Sacks,R.Zeibak-Shini,A.Aryal,S.Filin,Preparation of synthetic asdamaged models for post-earthquake BIM reconstruction research,J.Comput.Civil Eng.(2015). 04015032.
    [29]

    L.Ma,R.Sacks,R.Zeibak-Shini,Information modeling of earthquake-damaged reinforced concrete structures,Adv.Eng.Inf.(2015).
    [30]

    G.Guven,E.Ergen,M.Erberik,O.Kurc,T.Birgönül,Providing guidance for evacuation during emergency based on a real-time damage and vulnerability assessment of facilities,in:International Conference on Computation of Civil Engineering,ASCE,Reston VA,2012,pp.586-593.
    [31]

    N.Li,B.Becerik-Gerber,B.Krishnamachari,L.Soibelman,A BIM centered indoor localization algorithm to support building fire emergency response operations,Autom.Construct.42 (2014) 78-89.
    [32]

    H.Sezen,A.Whittaker,K.Elwood,K.Mosalam,Performance of reinforced concrete buildings during the August 17,1999 Kocaeli,Turkey earthquake,and seismic design and construction practise in Turkey,Eng.Struct.25 (2003)(1999) 103-114.
    [33]

    UMLAB,Universal Mechanism,Laboratory of Computational Mechanics,Bryansk,Russia,2014.
    [34]

    K.G.Hinzen,Simulation of toppling columns in archaeoseismology,Bullet.Seismol.Soc.Am.99 (2009) 2855-2875.
    [35]

    K.Meguro,H.Tagel-Din,Applied element method for structural analysis:theory and application for linear materials,Struct.Eng./Earthq.Eng.17 (2000) 21s-35s.
    [36]

    C.D.J.Smulders,H.Hofmeyer,An automated stabilisation method for spatial to structural design transformations,Adv.Eng.Inf.26 (2012) 653-950.
    [37]

    H.Sezen,Failure at Beam-Column Joints,The Earthquake Engineering Online Archive,NISEE E-Library,UC Berkeley,2011.
    [38]

    R.J.Allemang,The Modal Assurance Criterion-Twenty Years of Use and Abuse,Sound Vib.(2003) 14-21.
  • [1] U. KampB. J. GrowleyG. A. KhattakL. A. Owen许冲吕春来 . 基于GIS的2005年克什米尔地震区滑坡易发性区划. 地球与行星物理论评, 2012, 43(4): 62-77.
    [2] Lion KrischerTobias MegiesRobert BarschMoritz BeyreutherThomas LecocqCorentin CaudronJoachim Wassermann韩雪君马延路鲁来玉 . ObsPy:将地震学引入科学Python生态系统的桥梁. 地球与行星物理论评, 2016, 47(4): 344-358. doi: 10.16738/j.cnki.issn.1003-3238.201604006
    [3] S. PailopleeP. ChannarongV. Chutakositkanon李万金吕春来 . 用统计方法研究泰国-老挝-缅甸交界地区的地震活动. 地球与行星物理论评, 2014, 45(3): 24-32.
    [4] T. GorumC. J. van WestenO. KorupM. van der MeijdeXuanmei FanF. D. van der Meer许冲吕春来 . 2010年海地地震的复杂破裂机制与地形控制的滑坡样式对称性. 地球与行星物理论评, 2014, 45(3): 63-76.
    [5] X. C. ZhouW. C. WangZ. ChenL. YiL. LiuC. XieY. J. CuiJ. G. DuJ. W. ChengL. M. Yang赵霞潘红芹吴珍云 . 汶川MS8.0地震后中国四川西部温泉气的地球化学特征. 地球与行星物理论评, 2019, 50(6): 556-572. doi: 10.16738/j.cnkii.ssn.1003-3238.201906006
    [6] G. EkströmM. NettlesA. M. Dziewonski赵仲和吕春来 . 全球CMT计划2004~2010:13017个地震的矩心矩张量. 地球与行星物理论评, 2012, 43(5): 20-30.
    [7] X. LiuD. P. Zhao张晓曼赵小艳 . 利用地方震、远震走时和面波数据联合反演日本俯冲带P波和S波层析成像. 地球与行星物理论评, 2019, 50(1): 35-63. doi: 10.16738/j.cnki.issn.1003-3238.201901003
    [8] Q. -L. YaoZ. -J. Qiang李梦莹张志宏 . 热红外异常可作为未来强震的前兆手段. 地球与行星物理论评, 2020, 51(3): 224-235. doi: 10.16738/j.cnki.issn.1003-3238.202003002
    [9] F. GalvisE. MirandaP. HeresiH. DávalosJ. R. Silos孙楚津陈波 . 2017年9月19日普埃布拉-莫雷洛斯地震墨西哥城倒塌建筑物初步统计. 地球与行星物理论评, 2018, 49(4): 385-396. doi: 10.16738/j.cnkii.ssn.1003-3238.201804006
    [10] Peter Folger侯炳正赵仲和 . 地震:灾害风险、检测、预警和研究. 地球与行星物理论评, 2015, 46(5-6): 413-431. doi: 10.16738/j.cnki.issn.1003-3238.2015Z1003
    [11] W. B. Ouimet许冲邓罡吕春来 . 山体轰然倒塌. 地球与行星物理论评, 2014, 45(1-2): 60-61.
    [12] A. McGarrB. BekinsN. BurkardtJ. DeweyP. EarleW. EllsworthS. GeS. HickmanA. HollandE. MajerJ. RubinsteinA. Sheehan王博吕春来 . 应对流体注入诱发的地震——可通过控制注水活动来减少灾害. 地球与行星物理论评, 2016, 47(6): 478-481. doi: 10.16738/j.cnki.issn.1003-3238.201606002
    [13] A. McPhersonL. Hall谭颖吕春来 . 澳大利亚地震危险性和灾害风险评估中的场地分类. 地球与行星物理论评, 2013, 44(3): 32-52.
    [14] Y. ChenD. C. Booth兰晓雯吴何珍赵亚敏 . 《2008年汶川地震:灾难剖析》第四章:地震危险性和灾害风险评估. 地球与行星物理论评, 2019, 50(4): 367-381. doi: 10.16738/j.cnki.issn.1003-3238.201904006
    [15] T. MiyagiD. HigakiH. YagiS. DoshidaN. ChibaJ. UmemuraG. Satoh许冲吕春来 . 日本东北MW9.0地震后日本东北部的滑坡灾害勘察. 地球与行星物理论评, 2012, 43(3): 22-28.
    [16] M. Suter段莹田晓峰徐伟进 . 跨墨西哥火山带莫雷利亚断层的构造和全新世的破裂及其对地震灾害评估的意义. 地球与行星物理论评, 2017, 48(6): 542-561. doi: 10.16738/j.cnki.issn.1003-3238.201706006
    [17] T. LayC. J. AmmonH. KanamoriY. YamazakiK. F. CheungA. R. Hutko王蕤吕春来 . 2010年10月25日明打威海啸地震(MW7.8)和浅层巨大逆冲断裂引起的海啸灾害. 地球与行星物理论评, 2012, 43(3): 8-21.
    [18] CHEN JianpingLI JianfengQIN XuwenDONG Qingji孙岩李剑峰 . 基于RS/GIS的汶川震后次生地质灾害统计分析. 地球与行星物理论评, 2012, 43(1): 32-42.
    [19] N. A. WrightL. Foster李帛珊伍国春 . 通过工作的科学性提高灾害响应能力. 地球与行星物理论评, 2020, 51(1): 97-113. doi: 10.16738/j.cnki.issn.1003-3238.202001009
    [20] T. EgbelakinS. WilkinsonJ. InghamM. ASCER. PotangaroaM. Sajoudi杨磊王宾 . 提高建筑抗震能力的激励措施和因素. 地球与行星物理论评, 2019, 50(2): 168-189. doi: 10.16738/j.cnki.issn.1003-3238.201902004
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程

用于搜救的地震损坏建筑的内部模型

摘要: 地震时如果搜救行动快速,困于倒塌建筑空间内的幸存者就有可能获救。为给搜救队提供指导性的建筑信息,最大程度地降低风险和加快行动,本文提出了一种新颖的计算方法:输入是震前建筑的"竣工"建筑信息建模(BIM)模型和根据地面激光扫描结果得到的震后外面部件的部分"损坏"BIM模型;在地震之前,生成大量的可能倒塌模式;地震之后,可迅速选出几何结构与"损坏"的外部BIM最相似的模式。本文详述了基于点距最小和算法及模态置信准则(MAC)算法的选择方法,并演示了在一系列的计算机模拟的倒塌结构模型上的应用,显示所提出方法的潜在可行性。

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回