• ISSN 1003-3238
  • CN 10-1702/P

利用高频和低频GPS观测资料研究2018年MW7.9阿拉斯加科迪亚克地震的同震和震后形变

Y. M. Wen Z. L. Guo C. J. Xu G. Y. Xu C. Song 郭泽龙 温扬茂

引用本文:
Citation:

利用高频和低频GPS观测资料研究2018年MW7.9阿拉斯加科迪亚克地震的同震和震后形变

  • 基金项目:

    本译文由国家自然科学基金(41774011,41721003,41974004),国家重点基础研究发展规划(973计划)资助项目(2013CB733304)共同资助

  • 摘要: 本文利用低频(15s)和高频(1s)全球定位系统(GPS)观测来研究2018年1月23号阿拉斯加科迪亚克岛MW7.9地震的同震位移。动态(高频GPS观测值)和准动态(震后2小时的低频GPS观测值)同震位移与静态GPS同震位移三者之间相互一致,符合走滑型地震的形变特征。静态与准动态位移的比较结果表明该地震发生后4天内的震后形变可忽略不计。我们通过静态位移场反演了五段断层模型中的断层滑移,并且推测最大的滑移发生在右旋南-南东走向(2.27m)和左旋北东走向(2.42m)的两个子断层上。反演得到地震矩M0为9.66×1020N·m(MW7.92)。在震后9个月时间内,12个附近GPS站点的水平形变均小于1cm,且最大震后形变值为7.4mm(AC26站点)。衰减时间为6.4天的对数模型比衰减时间为75.0天的指数模型能更好地拟合震后观测数据。观测到的震后形变可以通过余滑和/或黏弹性松弛模型来解释。
  • [1]

    Andrade,V.,and K.Rajendran(2014).The April 2012 Indian Ocean earthquakes:Seismotectonic context and implications for their mechanisms,Tectonophysics 617,126-139,doi:10.1016/j.tecto.2014.01.024.
    [2]

    Branzanti,M.,G.Colosimo,M.Crespi,and A.Mazzoni(2013).GPS near-real-time coseismic displace-ments for the great Tohoku-oki earthquake,IEEE Geosci.Remote Sens.Lett.10,no.2,372-376,doi:10.1109/LGRS.2012. 2207704.
    [3]

    Chen,K.,M.Ge,A.Babeyko,X.Li,F.Diao,and R.Tu(2016).Retrieving real-time co-seismic displacements using GPS/GLONASS:A preliminary report from the September 2015MW8.3 Illapel earthquake in Chile,Geophys.J.Int.206,no.2,941-953,doi:10.1093/gji/ggw190.
    [4]

    Delescluse,M.,N.Chamot-Rooke,R.Cattin,L.Fleitout,O.Trubienko,and C.Vigny(2012). April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust,Na-ture 490,no.7419,240-244,doi:10.1038/nature11520.
    [5]

    Ding,K.,J.T.Freymueller,Q.Wang,and R.Zou(2015).Coseismic and early postseismic deformation of the 5 January 2013MW7.5 Craig earthquake from static and kinematic GPS solutions,Bull.Seismol.Soc.Am.105,no.2B,1153-1164,doi:10.1785/0120140172.
    [6]

    Ekström,G.,M.Nettles,and A.M.Dziewonski(2012).The Global CMT project 2004-2010:Centroid-moment tensors for 13,017 earthquakes,Phys.Earth Planet.In.200/201,1-9,doi:10.1016/j.pepi.2012.04.002
    [7]

    Fratarcangeli,F.,G.Savastano,M.C.D'Achille,A.Mazzoni,M.Crespi,F.Riguzzi,R.Devoti,and G.Pietrantonio(2018).VADASE reliability and accuracy of real-time displacement estimation:Application to the central Italy 2016 earth-quakes,Remote Sens.10,no.8,1-20,doi:10.3390/rs10081201.
    [8]

    Freed,A.M.,and J.Lin(2001).Delayed triggering of the 1999 Hector Mine earthquake by viscoe-lastic stress transfer,Nature411,no.6834,180-183,doi:10.1038/35075548.
    [9]

    Freed,A.M.,R.Bürgmann,E.Calais,J.Freymueller,and S.Hreinsdóttir(2006).Implications of deformation following the 2002 Denali,Alaska,earthquake for postseismic relaxation processes and lithospheric rheology,J.Geophys.Res.111,no.1,1-23,doi:10.1029/2005JB003894.
    [10]

    Gulick,S.P.S.,L.A.Lowe,T.L.Pavlis,J.V.Gardner,and L.A.Mayer(2007).Geophysical insights into the transition fault debate:Propagating strike slip in response to stalling Yakutat block subduction in the Gulf of Alaska,Geology35,no.8,763-766,doi:10.1130/G23585A.1.
    [11]

    Heki,K.(2003).Seasonal crustal deformation in Japan:Final synthesis,IUGG XXIII General Assembly,JSG01/A01-014,Sapporo,Japan,30 June-11 July 2003.
    [12]

    Hwang,L.J.,and H.Kanamori(1992).Rupture processes of the 1987-1988 Gulf of Alaska earthquake sequence,J.Geophys.Res.97,no.92,19,881,doi:10.1029/92JB01817.
    [13]

    Ichinose,G.,P.Somerville,H.K.Thio,R.Graves,and D.O'Connell(2007).Rupture process of the 1964 Prince William Sound,Alaska,earthquake from the combined inversion of seismic,tsunami,and geodetic data,J.Geophys.Res. 112,no.7,1-21,doi:10.1029/2006JB004728.
    [14]

    Jonsson,S.,P.Segall,R.Pedersen,and Björnsson(2003).Post-earthquake ground movements correlated to pore-pressure transients,Nature424,no.6495,179-183,doi:10.1038/nature01776.
    [15]

    Krabbenhoeft,A.,R.von Huene,J.J.Miller,D.Lange,and F.Vera(2018).Strike-slip 23 January 2018MW7.9 Gulf of Alaska rare intraplate earthquake:Complex rupture of a fracture zone system,Sci.Rep. 8,no.1,13,706,doi:10.1038/s41598-018-32071-4.
    [16]

    Lahr J.C.,R.A.Page,C.D.Stephens,and D.H.Christensen.(1988).Unusual earthquake in the Gulf of Alaska and fragmentation of the pacific Pla-te,Geophys.Res.Lett.15,no.13,1483-1486.
    [17]

    Laske,G.,G.Masters,Z.Ma,and M.Pasyanos,(2013).Update on CRUST1.0:A 1-degree global model of Earth's crust,Geophys.Res.Abstr.15,Abstract EGU2013-2658.
    [18]

    Lay,T.,L.Ye,Y.Bai,K.F.Cheung,and H.Kanamori(2018).The 2018MW7.9 Gulf of Alaska earthquake:Multiple fault rupture in the Pacific plate,Geophys.Res.Lett.45,no.18,9542-9551,doi:10.1029/2018GL079813.
    [19]

    Meng,L.,J.-P.Ampuero,J.Stock,Z.Duputel,Y.Luo,and V.C.Tsai(2012).Earthquake in a maze:Compressional rupture branching during the 2012 MW8.6 Sumatra earthquake,Science,337,724-727.
    [20]

    Pegler,G.,and S.Das(1995).The 1987-1992 Gulf of Alaska earthquakes,Tectonophysics257,nos.2/4,111-136,doi:10.1016/0040-1951(95)00112-3.
    [21]

    Peltzer,G.,P.Rosen,F.Rogez,and K.Hudnut(1998).Poroelastic rebound along the Landers 1992 earthquake surface rupture,J.Geophys.Res.103,no.B12,30,131-30,145,doi:10.1038/ja.2010.114.
    [22]

    Pollitz,F.,M.Vergnolle,and E.Calais(2003).Fault interaction and stress triggering of twentieth century earthquakes in Mongolia,J.Geophys.Res.108,no.B10,doi:10.1029/2002JB002375.
    [23]

    Pollitz,F.F.,R.Bürgmann,and B.Romanowicz(1998).Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes,Science280,no.5367,1245-1249,doi:10.1126/science.280.5367.1245.
    [24]

    Quintanar,L.,R.Madariaga,and A.Deschamps(1995).The earthquake sequence of November 1987 and March 1988 in the Gulf of Alaska:A new insight,Geophys.Res.Lett.22,no.9,1029-1032,doi:10.1029/95GL00905.
    [25]

    Ritsema,J.,S.N.Ward,and F.I.Gonzalez(1995).Inversion of deep-ocean tsunami records for 1987 to 1988 Gulf of Alaska earthquake parameters,Bull.Seismol.Soc.Am.85,no.3,747-754.
    [26]

    Ruppert,N.A.,C.Rollins,A.Zhang,L.Meng,S.G.Holtkamp,M.E.West,and J.T.Freymueller(2018).Complex faulting and triggered rupture during the 2018MW7.9 Offshore Kodiak,Alaska,earthquake,Geophys.Res.Lett.45,no.15,7533-7541,doi:10.1029/2018GL078931.
    [27]

    Satriano,C.,E.Kiraly,P.Bernard,and J.P.Vilotte(2012).The 2012MW8.6 Sumatra earthquake:Evidence of westward sequential seismic rup-tures associated to the reactivation of a N-S ocean fabric,Geophys.Res.Lett.39,no.15,1-6,doi:10.1029/2012GL052387.
    [28]

    Sauber,J.,G.Carver,S.Cohen,and R.King(2006).Crustal deformation and the seismic cycle acro-ss the Kodiak Islands,Alaska,J.Geophys.Res.111,no.2,1-14,doi:10.1029/2005JB003626.
    [29]

    Suito,H.,and J.T.Freymueller(2009).A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake,J.Geophys.Res.114,no.11,1-23,doi:10.1029/2008JB005954.
    [30]

    Wang,R.,F.Diao,and A.Hoechner,(2013).SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry,EGU General Assembly Conference,Vienna,Austria,7-12 April 2013,Vol.15,Abstract EGU2013-2411.
    [31]

    Wang,R.,F.Lorenzo-Martín,and F.Roth(2006).PSGRN/PSCMP-A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory,Comput.Geosci. 32,527-541,doi:10.1016/j.cageo.2005.08.006.
    [32]

    Wei,S.,D.Helmberger,and J.P.Avouac(2013).Modeling the 2012 Wharton basin earthquakes off-Sumatra:Complete lithospheric failure,J.Geophys.Res.118,no.7,3592-3609,doi:10.1002/jgrb.50267.
    [33]

    Wen,Y.,Z.Li,C.Xu,I.Ryder,and R.Brgmann(2012).Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series,J.Geophys.Res.117,no.8,1-15,doi:10.1029/2011JB009043.
    [34]

    Wiseman,K.,and R.Bürgmann(2012).Stress triggering of the great Indian Ocean strike-slip earthquakes in a diffuse plate boundary zone,Geophys.Res.Lett.39,no.22,1-6,doi:10.1029/2012GL053954.
    [35]

    Yue,H.,T.Lay,and K.D.Koper(2012).En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes,Nature490,no.7419,245-249,doi:10.1038/nature11492.
    [36]

    Zeng,Y.(2001).Viscoelastic stress-triggering of the 1999 Hector mine earthquake by the 1992 Landers earthquake,Geophys.Res.Lett.28,no.15,3007-3010,doi:10.1029/2000GL012806.
    [37]

    Zhao,B.,Y.Qi,D.Wang,J.Yu,Q.Li,and C.Zhang(2018).Coseismic slip model of the 2018MW7.9 Gulf of Alaska earthquake and its seismic hazard implications,Seismol.Res.Lett.90,no.2A,642-648,doi:10.1785/0220180141.
    [38]

    Zheng,K.,X.Zhang,X.Li,P.Li,J.Sang,T.Ma,and H.Schuh(2018).Capturing coseismic displacement in real time with mixed single- and dual-frequency receivers:Application to the 2018MW7.9 Alaska earthquake,GPS Solut.23,no.1,doi:10.1007/s10291-018-0794-y.
    [39]

    Zhong,S.,C.Xu,L.Yi,and Y.Li(2018).Focal mecha-nisms of the 2016 central Italy earthquake se-quence inferred from high-rate GPS and broadband seismic wave forms,Remote Sens.10,no.4,1-18,doi:10.3390/rs10040512.
    [40]

    Zumberge,J.F.,M.B.Heflin,D.C.Jefferson,M.M.Watkins,and F.H.Webb(1997).Precise point positioning for the efficient and robust analysis of GPS data from large networks,J.Geophys.Res.102,5005-5017,doi:10.1029/96JB03860.
    [41]

    Zweck,C.,J.T.Freymueller,and S.C.Cohen(2002).Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake,J.Geophys.Res.107,no.B4,ECV 1-1-ECV 1-11,doi:10.1029/2001JB000409.
  • [1] Y. G. WanZ. -K. ShenR. BürgmannJ. B. SunM. Wang靳志同万永革 . 根据GPS和InSAR测量推断2008年MW7.9汶川地震的断层形状和破裂分布. 地球与行星物理论评, 2018, 49(3): 195-221. doi: 10.16738/j.cnkii.ssn.1003-3238.201803002
    [2] S. HartzellC. MendozaL. Ramirez-GuzmanY. H. ZengW. Mooney李万金赵仲和 . 中国汶川2008年MW7.9地震的破裂历史:大地测量、远震和强震动数据的单独及联合反演评价. 地球与行星物理论评, 2018, 49(3): 222-242. doi: 10.16738/j.cnkii.ssn.1003-3238.201803003
    [3] Yong ZhangRongjiang WangJochen ZschauYun-tai ChenStefano ParolaiTorsten Dahm郑绪君许月怡张勇吴何珍 . 基于高频GPS和强震资料的迭代反褶积与叠加方法对地震破裂过程的自动成像. 地球与行星物理论评, 2016, 47(6): 500-520. doi: 10.16738/j.cnki.issn.1003-3238.201606004
    [4] K. DengS. Y. ZhouR. WangR. RobinsonC. P. ZhaoW. Z. Cheng宋肖汉周仕勇 . 2008年汶川MW7.9地震可能不是由紫坪铺水库诱发的证据. 地球与行星物理论评, 2018, 49(3): 183-194. doi: 10.16738/j.cnkii.ssn.1003-3238.201803001
    [5] Wenbin XuRishabh DuttaSigurjón Jónsson林吉焱吴何珍 . 用干涉合成孔径雷达数据和贝叶斯估计提高地震定位来识别活动断层:2004年沙特阿拉伯特布克地震序列. 地球与行星物理论评, 2017, 48(3): 204-217. doi: 10.16738/j.cnki.issn.1003-3238.201703002
    [6] C. XiaB. M. ZhaoM. HorikeT. Kagawa高楠王超朱玉萍 . 用经验格林函数方法模拟汶川MW7.9地震的强地震动. 地球与行星物理论评, 2018, 49(1): 35-52. doi: 10.16738/j.cnkii.ssn.1003-3238.201801004
    [7] 汪荣江S. Parolai葛茂荣金明培T. R. WalterJ. Zschau康秀平吕春来 . 2011年日本东北MW9.0地震:GPS与强震数据的比较. 地球与行星物理论评, 2014, 45(1-2): 9-21.
    [8] X. L. LeiZ. W. WangJ. R. Su王志伟雷兴林 . 页岩气开采水力压裂诱发四川盆地南部2018年12月ML5.7地震和2019年1月ML5.3地震. 地球与行星物理论评, 2020, 51(2): 144-160. doi: 10.16738/j.cnki.issn.1003-3238.202002003
    [9] L. LiB. S. WangZ. G. PengW. T. Wang李璐吴何珍 . 基于密集喜马拉雅一期台阵的2013年2月15日俄罗斯车里雅宾斯克陨石坠落事件的地震学观测. 地球与行星物理论评, 2019, 50(3): 231-246. doi: 10.16738/j.cnki.issn.1003-3238.201903003
    [10] K. MizoguchiS. UeharaK. Ueta张逸鹏吕春来 . 2011年4月11日日本东北福岛县浜通MW6.6地震的地表断层破裂和滑动分布. 地球与行星物理论评, 2013, 44(3): 8-16.
    [11] M. IckrathM. BohnhoffF. BulutG. Dresen佟薇杜微唐光伟吕春来 . 与1999年伊兹米特MW7.4地震相联系的应力旋转和应力恢复. 地球与行星物理论评, 2013, 44(5-6): 85-91.
    [12] Peter J. HaeusslerRobert C. WitterKelin Wang徐勇吕春来 . 加拿大海达瓜伊MW7.8地震期间同震沉降的潮间带生物指示物. 地球与行星物理论评, 2017, 48(4): 326-348. doi: 10.16738/j.cnki.issn.1003-3238.201704004
    [13] Peter Folger侯炳正赵仲和 . 地震:灾害风险、检测、预警和研究. 地球与行星物理论评, 2015, 46(5-6): 413-431. doi: 10.16738/j.cnki.issn.1003-3238.2015Z1003
    [14] T. LayC. J. AmmonH. KanamoriY. YamazakiK. F. CheungA. R. Hutko王蕤吕春来 . 2010年10月25日明打威海啸地震(MW7.8)和浅层巨大逆冲断裂引起的海啸灾害. 地球与行星物理论评, 2012, 43(3): 8-21.
    [15] Wei YangZhigang PengBaoshan WangZefeng LiSongyong Yuan杨微朱玉萍 . 利用断裂带首波获得2010年MW6.9玉树地震断裂带的速度差异. 地球与行星物理论评, 2016, 47(3): 211-221. doi: 10.16738/j.cnki.issn.1003-3238.201603003
    [16] J. K. CrossJ. RobergeD. A. Jerram于红梅吕春来 . 利用气孔大小分布和玻璃地球化学研究约束墨西哥波波卡特佩特火山脱气过程. 地球与行星物理论评, 2014, 45(1-2): 94-116.
    [17] Yih-Min WuTing-Li LinWei-An ChaoHsin-Hua HuangNai-Chi HsiaoChien-Hsin Chang张磊吴何珍吕春来 . 利用持续监测滤波后的垂直位移更快速短距离地震预警:2010年台湾甲仙地震典型例子研究. 地球与行星物理论评, 2014, 45(4): 1-10.
    [18] O. S. Boyd李晶吕春来 . 包括前震和余震的不含时间的地震危险性概率分析. 地球与行星物理论评, 2013, 44(4): 37-47.
    [19] Weijun WangXiaofeng MengZhigang PengQi-Fu ChenNing Liu刘宁王伟君王宝善 . 北京房山岩体附近随采矿活动增强的背景地震活动和动态触发事件研究. 地球与行星物理论评, 2016, 47(5): 413-430. doi: 10.16738/j.cnki.issn.1003-3238.201605004
    [20] T. MiyagiD. HigakiH. YagiS. DoshidaN. ChibaJ. UmemuraG. Satoh许冲吕春来 . 日本东北MW9.0地震后日本东北部的滑坡灾害勘察. 地球与行星物理论评, 2012, 43(3): 22-28.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程

利用高频和低频GPS观测资料研究2018年MW7.9阿拉斯加科迪亚克地震的同震和震后形变

基金项目:  本译文由国家自然科学基金(41774011,41721003,41974004),国家重点基础研究发展规划(973计划)资助项目(2013CB733304)共同资助

摘要: 本文利用低频(15s)和高频(1s)全球定位系统(GPS)观测来研究2018年1月23号阿拉斯加科迪亚克岛MW7.9地震的同震位移。动态(高频GPS观测值)和准动态(震后2小时的低频GPS观测值)同震位移与静态GPS同震位移三者之间相互一致,符合走滑型地震的形变特征。静态与准动态位移的比较结果表明该地震发生后4天内的震后形变可忽略不计。我们通过静态位移场反演了五段断层模型中的断层滑移,并且推测最大的滑移发生在右旋南-南东走向(2.27m)和左旋北东走向(2.42m)的两个子断层上。反演得到地震矩M0为9.66×1020N·m(MW7.92)。在震后9个月时间内,12个附近GPS站点的水平形变均小于1cm,且最大震后形变值为7.4mm(AC26站点)。衰减时间为6.4天的对数模型比衰减时间为75.0天的指数模型能更好地拟合震后观测数据。观测到的震后形变可以通过余滑和/或黏弹性松弛模型来解释。

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回