• ISSN 1003-3238
  • CN 10-1702/P

b值图像揭示南海海槽地震东部首先破裂

K. Z. Nanjo A. Yoshida 孟昭彤 吕悦军 刘静伟

引用本文:
Citation:

b值图像揭示南海海槽地震东部首先破裂

  • 基金项目:

    本译文由国家重点研发计划课题“海域地震活动性模型及其评价方法研究(2017YFC1500402)”项目资助

  • 摘要: 日本南海海槽的大型逆冲地震对日本社会及周围地区造成了灾难性破坏。大多数研究旨在确定强耦合区域,这些强耦合区域被认为是未来灾害性地震的主要来源。本文给出了整个南海海槽区b值图像。b值表示大、小地震发生率的比值,与差应力成反比,被用于探测不同构造条件下断层面上的高应力区。本文一个显著的发现是b值与滑动亏损速率(SDR)成反比,而且,东部高滑动亏损速率区域的b值低于西部地区,这说明东部凹凸体上的差应力高于西部地区。这可以解释南海海槽地震记录中,往往是东部首先破裂。
  • [1]

    . Obara,K.,Kasahara,K.,Hori,S.& Okada,Y.A densely distributed high-sensitivity seismograph network in Japan:Hi-net by National Research Institute for Earth Science and Disaster Prevention.Rev.Sci.Instrum.76,021301 (2005).
    [2]

    . Ozawa,S.et al.Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake.Nature475,373-376 (2011).
    [3]

    . Kaneda,Y.et al.in Seafloor Observatories (eds Favali,P.,Beranzoli,L.& De Santis,A.) 643-662 (Springer-Verlag,Heidelberg,2015).
    [4]

    . Spiess,F.N.et al.Precise GPS/acoustic positioning of seafloor reference points for tectonic studies.Phys.Earth Planet.Inter108,101-112 (1998).
    [5]

    . Gagnon,K.,Chadwell,C.D.& Norabuena,E.Mea-suring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements.Nature434,205-208 (2005).
    [6]

    . Meteorological Research Institute.Precursory phenomena observed before the 2011 off the Pacific coast of Tohoku Earthquake.Rep.Coord.Comm.Earthq.Predict.90,12-16 (2013) (in Japanese).
    [7]

    . Katsumata,K.A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0).Earth Planets Space63,709-712 (2011).
    [8]

    . Tanaka,S.Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (MW9.1).Geo-phys.Res.Lett.39,L00G26 (2012).
    [9]

    . Nagao,T.,Orihara,Y.& Kamoagwa,M.Pre-cursory phenomena possibly related to the 2011 M9.0 off the Pacific coast of Tohoku earthquake.J.Disaster Res.9,303-310 (2014).
    [10]

    . Kanamori,H.Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes.Phys.Earth Planet.Inter5,129-139 (1972).
    [11]

    . Ando,M.Source mechanism and tectonic significance of historical earthquakes along the Nankai Trough,Japan.Tectonophysics27,119-140(1975).
    [12]

    . Ishibashi,K.Status of historical seismology in Japan.Ann.Geophys.47,339-368 (2004).
    [13]

    . Ito,T.& Hashimoto,M.Spatiotemporal distribu-tion of interplate coupling in southwest Japan from inversion of geodetic data.J.Geophys.Res.109,B02315(2004).
    [14]

    . Hok,S.,Fukuyama,E.& Hashimoto,C.Dynamic rupture scenarios of anticipated Nankai-Tonan-kai earthquakes,southwest Japan.J.Geophys.Res.116,B12319 (2011).
    [15]

    . Yoshioka,S.& Matsuoka,Y.Interplate coupling along the Nankai Trough,southwest Japan,inferred from inversion analyses of GPS data:effects of subducting plate geometry and spacing of hypothetical ocean-bottom GPS stations.Tectonophysics600,165-174 (2013).
    [16]

    . Tadokoro,K.et al.Interseismic seafloor crustal deformation immediately above the source region of anticipated megathrust earthquake along the Nankai Trough,Japan.Geophys.Res.Lett.39,L10306 (2012).
    [17]

    . Moreno,M.,Rosenau,M.& Oncken,O.2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone.Nature467,198-202 (2010).
    [18]

    . Wang,K.,Hu,Y.& He,J.Deformation cycles of subduction earthquakes in a viscoelastic Earth.Nature484,327-332 (2012).
    [19]

    . Nanjo,K.Z.,Hirata,N.,Obara,K.& Kasahara,K.Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes.Geophys.Res.Lett.39,L20304 (2012).
    [20]

    . Tormann,T.,Enescu,B.,Woessner,J.& Wiemer,S.Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake.Nat.Geosci.8,152-158 (2015).
    [21]

    . Yokota,Y.,Ishikawa,T.,Watanabe,S.,Tashiro,T.& Asada,A.Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone.Nature534,374-377 (2016).
    [22]

    . Gutenberg,B.& Richter,C.F.Frequency of earthquakes in California.Bull.Seismol.Soc.Am.34,185-188 (1944).
    [23]

    . Wiemer,S.& Wyss,M.Mapping spatial variability of the frequency-magnitude distribu-tion of earthquakes.Adv.Geophys.45,259-302 (2002).
    [24]

    . Mogi,K.Magnitude-frequency relation for elastic shocks accompanying fractures of various mate-rials and some related problems in earthquakes.Bull.Earthq.Res.Inst.Univ.Tokyo40,831-853 (1962).
    [25]

    . Schorlemmer,D.,Wiemer,S.& Wyss,M.Earthquake statistics at Parkfield:1.Stationarity of b values.J.Geophys.Res.109,B12307 (2004).
    [26]

    . Scholz,C.H.The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes.Bull.Seismol.Soc.Am.58,399-415 (1968).
    [27]

    . Scholz,C.H.On the stress dependence of the earthquake b value.Geophys.Res.Lett.42,1399-1402 (2015).
    [28]

    . Schorlemmer,D.& Wiemer,S.Microseismicity data forecast rupture area.Nature434,1086 (2005).
    [29]

    . Obara,K.Nonvolcanic deep tremor associated with subduction in southwest Japan.Science296,1679-1681 (2002).
    [30]

    . Obara,K.& Kato,A.Connecting slow earth-quakes to huge earthquakes. Science353,253-257 (2016).
    [31]

    . Shelly,D.R.,Beroza,G.C.,Ide,S.& Nakamula,S.Low-frequency earthquakes in Shikoku,Japan,and their relationship to episodic tremor and slip.Nature442,188-191 (2006).
    [32]

    . Ide,S.,Shelly,D.R.& Beroza,G.C.Mechanism of deep low frequency earthquakes:Further evid-ence that deep non-volcanic tremor is generated by shear slip on the plate interface.Geophys.Res.Lett.34,L03308 (2007).
    [33]

    . Wiemer,S.,Yoshida,A.,Hosono,K.,Noguchi,S.& Takayama,H.Correlating seismicity parame-ters and subsidence in the Tokai region,central Japan.J.Geophys.Res.111,B10303 (2005).
    [34]

    . Ghosh,A.,Newman,A.V.,Thomas,A.M.& Farmer,G.T.Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula,Costa Rica.Geophys.Res.Lett.35,L01301 (2008).
    [35]

    . Tormann,T.,Wiemer,S.,Metzger,S.,Michael,A.& Hardebeck,J.L.Size distribution of Parkfield's microearthquakes reflects changes in surface creep rate.Geophys.J.Int.193,1474-1478 (2013).
    [36]

    . Nanjo,K.Z.et al.Analysis of completeness magnitude and seismic network coverage for Japan.Bull.Seismol.Soc.Am.100,3261-3268 (2010).
    [37]

    . Matsumura,S.Focal zone of a future Tokai earthquake inferred from the seismicity pattern around the plate interface.Tectonophysics273,271-291(1997).
    [38]

    . Baba,T.,Tanioka,Y.,Cummins,P.R.& Uhira,K.The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model.Phys.Earth Planet.Inter.132,59-73 (2002).
    [39]

    . Nakajima,J.& Hasegawa,A.Subduction of the Philippine Sea plate beneath southwestern Japan:Slab geometry and its relationship to arc magmatism.J.Geophys.Res.112,B08306 (2007).
    [40]

    . Hirose,F.,Nakajima,J.& Hasegawa,A.Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography.J.Geophys.Res.113,B09315(2008).
    [41]

    . Nakajima,J.,Hirose,F.& Hasegawa,A.Seismotectonics beneath the Tokyo metropolitan a-rea,Japan:Effect of slab-slab contact and overlap on seismicity.J.Geophys.Res.114,B08309 (2009).
    [42]

    . Aoi,S.et al.Stress transfer in the Tokai subduction zone from the 2009 Suruga Bay earthquake in Japan.Nat.Geosci.3,496-500 (2010).
    [43]

    . Wallace,L.M.et al.Near-field observations of an offshore MW6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough,southwest Japan.J.Geo-phys. Res.121,8338-8351 (2016).
    [44]

    . Woessner,J.& Wiemer,S.Assessing the quality of earthquake catalogues:estimating the magnitude of completeness and its uncertainty.Bull.Seismol.Soc.Am.95,684-698 (2005).
    [45]

    . Wiemer,S.A software package to analyze seismicity:ZMAP.Seismol.Res.Lett.72,373-382 (2001).
    [46]

    . Aki,K.Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits.Bull.Earthq.Res.Inst.Univ.Tokyo43,237-239 (1965).
    [47]

    . Ogata,Y.& Katsura,K.Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogs.Geophys.J.Int.113,727-738 (1993).
    [48]

    . Ogata,Y.& Katsura,K.Immediate and updated forecasting of aftershock hazard.Geophys.Res.Lett.33,L10305 (2006).
    [49]

    . Asada,A.& Yabuki,T.Centimeter-level positioning on the seafloor.Proc.Jpn.Acad.B77,7-12 (2001).
    [50]

    . Wessel,P.,Smith,W.H.F.,Scharroo,R.,Luis,J.F.& Wobbe,F.Generic Mapping Tools:improved version released.EOS Trans.AGU94,409-410(2013).
  • [1] Y. YamamotoK. ObanaT. TakahashiA. NakanishiS. KodairaY. Kaneda陈萍韩同城吕春来 . 南海海槽西部俯冲带日向滩地区俯冲九州-帕劳洋脊的成像. 地球与行星物理论评, 2014, 45(1-2): 78-93.
    [2] J. -H. Wang杨国栋曾文浩吴何珍 . 主震前b值异常的一种形成机制. 地球与行星物理论评, 2017, 48(6): 465-478. doi: 10.16738/j.cnki.issn.1003-3238.201706001
    [3] G. TusaC. MusumeciD. Patanè王巍辛晶许腾飞张天中 . 西西里岛东部地震预警参数评估. 地球与行星物理论评, 2018, 49(6): 536-553. doi: 10.16738/j.cnkii.ssn.1003-3238.201806002
    [4] Hosseyn HamzehlooMajid Mahood杨国栋陈瑶田宝峰 . 伊朗中东部地区的地震动衰减关系. 地球与行星物理论评, 2015, 46(2): 147-159.
    [5] C. SinghM. ShekarA. SinghR. K. Chadha张尧徐沁吕春来 . 根据Lg波Q值反演得到的Hi-CLIMB项目西藏剖面地震衰减特征. 地球与行星物理论评, 2012, 43(5): 12-19.
    [6] C. Hommerich邹立晔何少林白玲 . 日本东部大地震、海啸及核熔毁之后的信任与主观幸福感:初步结果. 地球与行星物理论评, 2018, 49(1): 73-90. doi: 10.16738/j.cnkii.ssn.1003-3238.201801007
    [7] Owen HurdMark D. Zoback谢辉李青梅孙丽娜金学申 . 美国中东部和加拿大东南部的板内地震、区域应力和断层力学. 地球与行星物理论评, 2016, 47(2): 130-146. doi: 10.16738/j.cnki.issn.1003-3238.201602004
    [8] 雑賀敦大久保慎人李君白玲 . 菲律宾海板块内发生的日本岐阜县美浓东部地震(M5.6)的震源机制. 地球与行星物理论评, 2014, 45(4): 11-20.
    [9] S. SinghH. CartonP. TapponnierN. D. HanantoA. P. S. ChauhanD. HartoyoM. BaylyS. MoeljopranotoT. BuntingP. ChristieH. LubisJ. Martin王新洋阮爱国吕春来 . 2004年苏门答腊地震震中区洋壳破裂的地震学证据. 地球与行星物理论评, 2012, 43(6): 22-27.
    [10] Y. Yamashita雷华田一鸣 . 日本东北地区(日本东部大地震的中心和周边地区)的社会重建应如何开始?. 地球与行星物理论评, 2019, 50(6): 587-591. doi: 10.16738/j.cnkii.ssn.1003-3238.201906008
    [11] Yi ChengLouis NgaiYuen Wong杨志高邹立晔朱玉萍 . 走滑破裂型大地震中前震的发生. 地球与行星物理论评, 2016, 47(5): 359-376. doi: 10.16738/j.cnki.issn.1003-3238.201605001
    [12] E. FukuyamaKen Xiansheng Hao李怡青吕春来 . 2008年汶川地震中破裂的近平行倾斜断层. 地球与行星物理论评, 2014, 45(1-2): 1-8.
    [13] E. KiserM. Ishii康瑞清何钧吕春来 . 2010年MW8.8智利地震:多段触发及含频率的破裂特点. 地球与行星物理论评, 2012, 43(3): 1-7.
    [14] J. ChengY. F. RongH. MagistraleG. H. ChenX. W. Xu尹晓菲李万金 . 中国大陆的地震破裂尺度关系. 地球与行星物理论评, 2020, 51(4): 389-409.
    [15] D. WangJ. Mori张岩吕春来许忠淮 . 2010年中国青海地震:超剪切破裂的中等地震. 地球与行星物理论评, 2012, 43(4): 1-9.
    [16] Y. G. WanZ. -K. ShenR. BürgmannJ. B. SunM. Wang靳志同万永革 . 根据GPS和InSAR测量推断2008年MW7.9汶川地震的断层形状和破裂分布. 地球与行星物理论评, 2018, 49(3): 195-221. doi: 10.16738/j.cnkii.ssn.1003-3238.201803002
    [17] Yong ZhangRongjiang WangJochen ZschauYun-tai ChenStefano ParolaiTorsten Dahm郑绪君许月怡张勇吴何珍 . 基于高频GPS和强震资料的迭代反褶积与叠加方法对地震破裂过程的自动成像. 地球与行星物理论评, 2016, 47(6): 500-520. doi: 10.16738/j.cnki.issn.1003-3238.201606004
    [18] T. GorumC. J. van WestenO. KorupM. van der MeijdeXuanmei FanF. D. van der Meer许冲吕春来 . 2010年海地地震的复杂破裂机制与地形控制的滑坡样式对称性. 地球与行星物理论评, 2014, 45(3): 63-76.
    [19] I. KurzonF. L. VernonA. RosenbergerY. Ben-Zion刘长生李万金赵谊吴何珍 . 利用奇异值分解方法实时自动检测P波和S波. 地球与行星物理论评, 2017, 48(4): 291-307. doi: 10.16738/j.cnki.issn.1003-3238.201704002
    [20] M. Suter段莹田晓峰徐伟进 . 跨墨西哥火山带莫雷利亚断层的构造和全新世的破裂及其对地震灾害评估的意义. 地球与行星物理论评, 2017, 48(6): 542-561. doi: 10.16738/j.cnki.issn.1003-3238.201706006
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程

b值图像揭示南海海槽地震东部首先破裂

基金项目:  本译文由国家重点研发计划课题“海域地震活动性模型及其评价方法研究(2017YFC1500402)”项目资助

摘要: 日本南海海槽的大型逆冲地震对日本社会及周围地区造成了灾难性破坏。大多数研究旨在确定强耦合区域,这些强耦合区域被认为是未来灾害性地震的主要来源。本文给出了整个南海海槽区b值图像。b值表示大、小地震发生率的比值,与差应力成反比,被用于探测不同构造条件下断层面上的高应力区。本文一个显著的发现是b值与滑动亏损速率(SDR)成反比,而且,东部高滑动亏损速率区域的b值低于西部地区,这说明东部凹凸体上的差应力高于西部地区。这可以解释南海海槽地震记录中,往往是东部首先破裂。

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回