• ISSN 1003-3238
  • CN 11-2368/P

基于震源机制解反演应力场的一种改进方法

P. Martínez-Garzón Y. Ben-Zion N. Abolfathian G. Kwiatek M. Bohnhoff 李振月 李泽潇 万永革

引用本文:
Citation:

基于震源机制解反演应力场的一种改进方法

  • 基金项目:

    本译文由河北省地震科技星火计划(DZ20190415002)、国家自然科学基金(41674055,41704053)和防灾科技学院黄大年教学团队支持项目共同资助

  • 摘要: 本文发展了基于震源机制解反演二维或三维背景应力场方位和主应力相对大小R的一种可靠的、高精度的方法。所使用的震源机制解剔除了可能受到局部应力场的强烈影响、不能反映大尺度背景构造应力场信息的事件。去丛集后的数据利用k均值算法分为若干包含最少地震个数Nmin到2Nmin的组。人工实验测试表明,当R≈0.5时,Nmin≈30才能保证不同应力体系包含不同噪声水平的情况下得到稳定的结果;当R接近于0或1时,则需要Nmin≈45。另外的一个实验比较了两种从震源机制解中选择断层面方法的表现:(a)选择震源机制的滑动矢量和应力张量给出的剪应力矢量之间角度最小的那个节面;(b)给定应力场和摩擦系数,选择失稳系数最大的节面,它更接近最优断层。结果发现,失稳准则在所有试验的不同应力体系、主应力相对大小、噪声水平的情况下得到的结果更准确。本文改进的方法将失稳准则迭代选择断层面和加入阻尼迭代反演各震源机制分组的应力场相结合。加入阻尼反演得到的各分区应力场结果中融合了相邻区域的应力场信息,能够得到不受分区影响的高精度结果。本文方法的一些特征在基于南加州圣哈辛托断裂带震源机制解的研究中得到体现。
  • [1]

    Allam,A.A.,and Y.Ben-Zion(2012),Seismic velocity structures in the Southern California plate-boundary environment from double-diffe-rence tomography,Geophys.J.Int.,190(2),1181-1196,doi:10.1111/j.1365-246X.2012.05544.x.
    [2]

    Arnold,R.,and J.Townend(2007),A Bayesian approach to estimating tectonic stress from seismological data,Geophys.J.Int.,170(3),1336-1356,doi:10.1111/j.1365-246X.2007.03485.x.
    [3]

    Bailey,I.W.,Y.Ben-Zion,T.W.Becker,and M.Holschneider(2010),Quantifying focal mechanism heterogeneity for fault zones in central and Southern California,Geophys.J.Int.,183(1),433-450,doi:10.1111/j.1365-246X.2010.04745.x.
    [4]

    Ben-Zion,Y.,and J.R.Rice(1993),Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing aspe-rity and nonasperity regions,J.Geophys.Res.,98,14,109-14,131,doi:10.1029/93JB01096.
    [5]

    Bohnhoff,M.,H.Grosser,and G.Dresen(2006),Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit MW=7.4 earthquake,Geophys.J.Int.,166(1),373-385,doi:10.1111/j.1365-246X.2006.03027.x.
    [6]

    Bott,M.H.(1959),The mechanics of oblique slip faulting,Geol.Mag.,96,109-117.
    [7]

    Gephart,J.W.,and D.W.Forsyth(1984),An im-proved method for determining the regional stress tensor using earthquake focal mechanism data:Application to the San Fernando Earth-quake Sequence,J.Geophys.Res.,89,9305-9320,doi:10.1029/JB089iB11p09305.
    [8]

    Ghisetti,F.(2000),Slip partitioning and deformation cycles close to major faults in Southern California:Evidence from small-scale faults,Tectoni-cs,19,25-43,doi:10.1029/1999TC900054.
    [9]

    Hardebeck,J.(2010),Aftershocks are well aligned with the background stress field,contradicting the hypothesis of highly heterogeneous crustal stress,J.Geophys.Res.,115,B12308,doi:10.1029/2010JB007586.
    [10]

    Hardebeck,J.L.,and E.Hauksson(1999),Role of fluids in faulting inferred from stress field signatures,Science,285(5425),236-239,doi:10.1126/science.285.5425.236.
    [11]

    Hardebeck,J.L.,and E.Hauksson(2001a),Crustal stress field in Southern California and its implications for fault mechanics,J.Geophys.Res.,106,21,859-21,882,doi:10.1029/2001JB 000292.
    [12]

    Hardebeck,J.L.,and E.Hauksson(2001b),Stress orientations obtained from earthquake focal mechanisms:What are appropriate uncertainty estimates? Bull.Seismol.Soc.Am.,91(2),250-262,doi:10.1785/0120000032.
    [13]

    Hardebeck,J.L.,and A.J.Michael(2004),Stress o-rientations at intermediate angles to the San Andreas Fault,California,J.Geophys.Res.,109,B11303,doi:10.1029/2004JB003239.
    [14]

    Hardebeck,J.L.,and A.J.Michael(2006),Damped regional-scale stress inversions:Methodology and examples for Southern California and the Coalinga aftershock sequence,J.Geophys.Res.,111,B11310,doi:10.1029/2005JB004144.
    [15]

    Hartigan,J.A.,and M.A.Wong(1979),Algorithm AS 136:A k-means clustering algorithm,J.R.Stat.Soc.,28(1),100-108.
    [16]

    Hauksson,E.,W.Yang,and P.M.Shearer(2012),Waveform relocated earthquake catalog for Southern California(1981 to June 2011),Bull.Seismol.Soc.Am.,102(5),2239-2244,doi:10.1785/0120120010.
    [17]

    Heidbach,O.,M.Tingay,and F.Wenzel(2010),Frontiers in stress research,Tectonophysics,482(1-4),1-2,doi:10.1016/j.tecto.2009.11.009.
    [18]

    Holt,W.E.,E.Klein,and L.M.Flesch 2010.GPS strain rates,optimal fault slip rates,and predic-ted moment rates in Western U.S.Plate Boundary Zone,Proceedings of the Workshop on Incorporating Geodetic Surface Deforma-tion Data into UCERF3,Palm Spring,Calif.
    [19]

    Ickrath,M.,M.Bohnhoff,G.Dresen,P.Martínez-Garzón,F.Bulut,G.Kwiatek,and O.Germer(2015),Detailed analysis of spatiotemporal va-riations of the stress field orientation along the Izmit-Düzce rupture in NW Turkey from inversion of first-motion polarity data,Geophys.J.Int.,202(3),2120-2132,doi:10.1093/gji/ggv273.
    [20]

    Jonhson,S.C.(1967),Hierarchical clustering schemes,Psychometrika,2,241-254.
    [21]

    Kagan,Y.Y.(1991),3-D rotation of double-couple earthquake sources,Geophys J Int,106,709-716.
    [22]

    King,G.C.P.,R.S.Stein,and J.Lin(1994),Static stress changes and the triggering of earth-quakes,Bull.Seismol.Soc.Am.,84(3),935-953.
    [23]

    Li,Z.,Z.Peng,Y.Ben-Zion,and F.L.Vernon(2015),Spatial variations of shear wave anisotropy near the San Jacinto Fault Zone in Southern California,J.Geophys.Res.Solid Earth,120,8334-8347,doi:10.1002/2015JB012483.
    [24]

    Lund,B.,and R.Slunga(1999),Stress tensor inver-sion using detailed microearthquake information and stability constraints:Application to Ölfus in southwest Iceland,J.Geophys.Res.,104,14,947-14,964,doi:10.1029/1999JB900111.
    [25]

    Lund,B.,and J.Townend(2007),Calculating hori-zontal stress orientations with full or partial knowledge of the tectonic stress tensor,Geo-phys.J.Int.,170(3),1328-1335,doi:10.1111/j.1365-246X.2007.03468.x.
    [26]

    Martínez-Garzón,P.,G.Kwiatek,M.Ickrath,and M.Bohnhoff(2014),MSATSI:A MATLAB pa-ckage for stress inversion combining solid cla-ssic methodology:A new simplified user-handling,and a visualization tool,Seismol.Res.Lett.,85(4),896-904,doi:10.1785/0220130189.
    [27]

    Martínez-Garzón,P.,V.Vavryčuk,G.Kwiatek,and M.Bohnhoff(2016),Sensitivity of stress inversion of focal mechanisms to pore pressure changes,Geophys.Res.Lett.,43,8441-8450,doi:10.1002/2016GL070145.
    [28]

    McKenzie,D.P.(1969),The relation between fault plane solutions for earthquakes and the direc-tions of the principal stresses,Bull.Seismol.Soc.Am.,59(2),591-601.
    [29]

    Meng,X.,and Z.Peng(2014),Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 MW7.2 El Mayor-Cucapah earthquake,Geophys.J.Int.,197(3),1750-1762,doi:10.1093/gji/ggu085.
    [30]

    Michael,A.J.(1984),Determination of stress from slip data:Faults and folds,J.Geophys.Res.,89,11,517-11,526,doi:10.1029/JB089iB13p 11517.
    [31]

    Michael,A.J.(1987),Use of focal mechanisms to determine stress:A control study,J.Geophys.Res.,92,357-368,doi:10.1029/JB092iB01p 00357.
    [32]

    Michael,A.J.(1990),Energy constraints on kine-matic models of oblique faulting:Loma Prieta versus Parkfield-Coalinga,Geophys.Res.Lett.,17,1453-1456,doi:10.1029/GL017i009p 01453.
    [33]

    Michael,A.J.(1991),Spatial variations in stress within the 1987 Whittier Narrows,California,aftershock sequence:New techniques and resul-ts,J.Geophys.Res.,96,6303-6319,doi:10.1029/91JB00195.
    [34]

    Michael,A.J.,W.L.Ellsworth,and D.H.Oppenhei-mer(1990),Coseismic stress changes induced by the 1989 Loma Prieta,California Earth-quake,Geophys.Res.Lett.,17,1441-1444,doi:10.1029/GL017i009p01441.
    [35]

    Okada,Y.(1985),Surface deformation due to shear and tensile faults in a half-space,Bull.Seismol.Soc.Am.,75(4),1135-1154.
    [36]

    Pischiutta,M.,F.Salvini,J.Fletcher,A.Rovelli,and Y.Ben-Zion(2012),Horizontal polarization of ground motion in the Hayward fault zone at Fremont,California:Dominant fault-high-angle polarization and fault-induced cracks,Geophys.J.Int.,188(3),1255-1272.
    [37]

    Ross,Z.E.,and Y.Ben-Zion(2013),Spatio-temporal variations of double-couple aftershock mechanisms and possible volumetric earthquake s-train,J.Geophys.Res.Solid Earth,118,2347-2355,doi:10.1002/jgrb.50202.
    [38]

    Rousseeuw,P.J.(1987),Silhouettes:A graphical aid to the interpretation and validation of cluster analysis,J.Comput.Appl.Math.,20,53-65,doi:10.1016/0377-0427(87)90125-7.
    [39]

    Scholz,C.H.(2002),The Mechanics of Earthquakes and Faulting,2nd ed.,Cambridge Univ.Press.
    [40]

    Seeber,G.A.F.(1984),Multivariate Observations,John Wiley Sons Inc..
    [41]

    Sibson,R.H.(1985),A note on fault reactivation,J.Struct.Geol.,7(6),751-754,doi:10.1016/0191-8141(85)90150-6.
    [42]

    Townend,J.,and M.Zoback(2001),Implications of earthquake focal mechanisms for the frictional strength of the San Andreas Fault system,Geol.Soc.London Spec.Publ.,186,13-21,doi:10.1144/GSL.SP.2001.186.01.02.
    [43]

    Vavryčuk,V.(2011),Principal earthquakes:Theory and observations for the 2008 West Bohemia swarm,Earth Planet.Sci.Lett.,305(3-4),290-296,doi:10.1016/j.epsl.2011.03.002.
    [44]

    Vavryčuk,V.(2014),Iterative joint inversion for stress and fault orientations from focal mechanisms,Geophys.J.Int.,199(1),69-77,doi:10.1093/gji/ggu224.
    [45]

    Vavryčuk,V.(2015),Earthquake mechanisms and stress field,in Encyclopedia of Earthquake Engineering,edited by M.Beer et al.,pp.728-746,Springer,Berlin Heidelberg.
    [46]

    Vavryčuk,V.,F.Bouchaala,and T.Fischer(2013),High-resolution fault image from accurate locations and focal mechanisms of the 2008 swarm earthquakes in West Bohemia,Czech Republic,Tectonophysics,590,189-195,doi:10.1016/j.tecto.2013.01.025.
    [47]

    Voronoi(1908),Nouvelles applications des para-mètres continus à la théorie de formes quadratiques,J Reine Angew Math,134,198-287.
    [48]

    Wallace,R.E.(1951),Geometry of Shearing Stress and Relation to Faulting,J.Geol.,59(2),118-130.
    [49]

    Wesson,R.L.,and O.S.Boyd(2007),Stress before and after the 2002 Denali fault earthquake,Geophys.Res.Lett.,34,L07303,doi:10.1029/2007GL029189.
    [50]

    Yang,W.,and E.Hauksson(2013),The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California,Geophys.J.Int.,doi:10.1093/gji/ggt113.
    [51]

    Yang,W.,E.Hauksson,and P.M.Shearer(2012),Computing a large refined catalog of focal mechanisms for Southern California(1981-2010):Temporal stability of the style of faulting,Bull.Seismol.Soc.Am.,102(3),1179-1194,doi:10.1785/0120110311.
    [52]

    Zaliapin,I.,and Y.Ben-Zion(2013),Earthquake clusters in Southern California I:Identification and stability,J.Geophys.Res.Solid Earth,118,2847-2864,doi:10.1002/jgrb.50179.
    [53]

    Zaliapin,I.,and Y.Ben-Zion(2016),A global classification and characterization of earthquake clusters,Geophys.J.Int.,207(1),608-634,doi:10.1093/gji/ggw300.
    [54]

    Zigone,D.,Y.Ben-Zion,M.Campillo,and P.Roux(2015),Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love Waves,Pure Appl.Geophys.,172,1007-1032,doi:10.1007/s00024-014-0872-1.
    [55]

    Zoback,M.L.(1992),First- and second-order patter-ns of stress in the lithosphere:The World Stress Map Project,J.Geophys.Res.,97,11,703-11,728,doi:10.1029/92JB00132.
  • [1] J. -H. Wang杨国栋曾文浩吴何珍 . 主震前b值异常的一种形成机制. 世界地震译丛, 2017, 48(6): 465-478. doi: 10.16738/j.cnki.issn.1003-3238.201706001
    [2] Julie MauryFrançois H. CornetLouis Dorbath万永魁万永革李丽 . 根据震源机制确定应力场方法述评:在1980年锡伦茨地震危机(上莱茵地堑)的应用. 世界地震译丛, 2015, 46(3): 175-201. doi: 10.16738/j.cnki.issn.1003-3238.201503001
    [3] Yongge WanShuzhong ShengJichao HuangXiang LiXin Chen杨帆盛书中朱玉萍 . 基于震源机制解数据反演构造应力张量的网格搜索法及其在中国、越南和老挝边界地区的应用. 世界地震译丛, 2017, 48(2): 169-184. doi: 10.16738/j.cnki.issn.1003-3238.201702004
    [4] V. Vavryčuk高熹微宋程万永革吕春来 . 根据震源机制迭代联合反演应力和断层取向. 世界地震译丛, 2014, 45(4): 21-33.
    [5] P. Martínez-GarzónG. KwiatekM. IckrathM. Bohnhoff崔华伟万永革吕春来 . MSATSI:结合可靠经典方法的新简化用户处理及可视化工具的应力反演MATLAB软件包. 世界地震译丛, 2014, 45(4): 34-45.
    [6] C. ChiarabbaL. JovaneR. DiStefano杨国栋朱玉萍 . 基于20年仪器记录的意大利地震活动性新见解. 世界地震译丛, 2017, 48(5): 448-464. doi: 10.16738/j.cnki.issn.1003-3238.201705005
    [7] V. VavryukD. Kühn赵仲和吕春来 . 波形矩张量反演的时间一频率两步法. 世界地震译丛, 2012, 43(6): 28-48.
    [8] Y. L. LiB. S. WangR. Z. HeH. W. ZhengJ. Y. YanY. Li李娱兰郑洪伟贺日政 . 青藏高原中部中小地震的精定位、震源机制及构造背景分析. 世界地震译丛, 2019, 50(3): 212-230. doi: 10.16738/j.cnki.issn.1003-3238.201903002
    [9] P. AdamováJ. Šílený李晶吕春来 . 几次强震有争议的非双力偶机制:二阶矩方法. 世界地震译丛, 2014, 45(5-6): 34-52.
    [10] J. D. Zechar张盛峰陈时军吕春来 . 地震预测评估方法(一). 世界地震译丛, 2018, 49(4): 303-320. doi: 10.16738/j.cnki.issn.1003-3238.201804001
    [11] 雑賀敦大久保慎人李君白玲 . 菲律宾海板块内发生的日本岐阜县美浓东部地震(M5.6)的震源机制. 世界地震译丛, 2014, 45(4): 11-20.
    [12] Y. ChengJ. LinX. H. ShenX. WanX. X. LiW. J. Wang程艳林剑 . 基于“张衡一号”卫星的GRO掩星载荷数据分析. 世界地震译丛, 2019, 50(4): 359-366. doi: 10.16738/j.cnki.issn.1003-3238.201904005
    [13] Keith A. Porter杨宇东朱玉萍 . 太平洋地震工程研究的基于性能的地震工程方法. 世界地震译丛, 2017, 48(4): 281-290. doi: 10.16738/j.cnki.issn.1003-3238.201704001
    [14] S. ColombelliO. AmorosoA. ZolloH. Kanamori曾包红张逸鹏吕春来 . 用日本数据对基于阈值的地震预警方法的检验. 世界地震译丛, 2013, 44(2): 46-56.
    [15] Vince Cronin李万金李永华吕春来 . 地质学家震源机制解入门. 世界地震译丛, 2015, 46(1): 66-83.
    [16] Utpal SaikiaS. S. RaiM. SubrahmanyamSatyajit DuttaSomasish BoseKajaljyoti BorahRishikesh Meena任家琪李艳娥 . 印度喀拉拉邦伊都基水库附近小震的精确定位和震源机制:地震成因的启示. 世界地震译丛, 2016, 47(3): 177-187. doi: 10.16738/j.cnki.issn.1003-3238.201603001
    [17] Yong ZhangRongjiang WangJochen ZschauYun-tai ChenStefano ParolaiTorsten Dahm郑绪君许月怡张勇吴何珍 . 基于高频GPS和强震资料的迭代反褶积与叠加方法对地震破裂过程的自动成像. 世界地震译丛, 2016, 47(6): 500-520. doi: 10.16738/j.cnki.issn.1003-3238.201606004
    [18] 功刀卓青井真中村洋光鈴木亘森川信之藤原広行杨红艳白玲 . 用于地震烈度计算的近似滤波的改进. 世界地震译丛, 2013, 44(3): 57-67.
    [19] István BondárDmitry Storchak张莹莹吴何珍 . 国际地震中心改进的定位程序. 世界地震译丛, 2016, 47(5): 377-401. doi: 10.16738/j.cnki.issn.1003-3238.201605002
    [20] J. L. Soler-LlorensJ. J. Galiana-MerinoJ. Giner-CaturlaP. Jauregui-EslavaS. Rosa-CintasJ. Rosa-Herranz朱叶琳赵龙梅罗斐孙宏志李万金 . Geophonino的开发与编程:一个低成本的基于Arduino技术并用于垂直地震检波器的地震记录仪. 世界地震译丛, 2018, 49(5): 452-465. doi: 10.16738/j.cnkii.ssn.1003-3238.201805003
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  39
  • PDF下载量:  41
  • 被引次数: 0
出版历程

基于震源机制解反演应力场的一种改进方法

基金项目:  本译文由河北省地震科技星火计划(DZ20190415002)、国家自然科学基金(41674055,41704053)和防灾科技学院黄大年教学团队支持项目共同资助

摘要: 本文发展了基于震源机制解反演二维或三维背景应力场方位和主应力相对大小R的一种可靠的、高精度的方法。所使用的震源机制解剔除了可能受到局部应力场的强烈影响、不能反映大尺度背景构造应力场信息的事件。去丛集后的数据利用k均值算法分为若干包含最少地震个数Nmin到2Nmin的组。人工实验测试表明,当R≈0.5时,Nmin≈30才能保证不同应力体系包含不同噪声水平的情况下得到稳定的结果;当R接近于0或1时,则需要Nmin≈45。另外的一个实验比较了两种从震源机制解中选择断层面方法的表现:(a)选择震源机制的滑动矢量和应力张量给出的剪应力矢量之间角度最小的那个节面;(b)给定应力场和摩擦系数,选择失稳系数最大的节面,它更接近最优断层。结果发现,失稳准则在所有试验的不同应力体系、主应力相对大小、噪声水平的情况下得到的结果更准确。本文改进的方法将失稳准则迭代选择断层面和加入阻尼迭代反演各震源机制分组的应力场相结合。加入阻尼反演得到的各分区应力场结果中融合了相邻区域的应力场信息,能够得到不受分区影响的高精度结果。本文方法的一些特征在基于南加州圣哈辛托断裂带震源机制解的研究中得到体现。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回