• ISSN 1003-3238
  • CN 11-2368/P

中国西南地区纽马克位移新的评估模型

Jin J. -L. Wang Y. Gao D. Yuan R. -M. Yang X. -Y. 金家梁 袁仁茂

引用本文:
Citation:

中国西南地区纽马克位移新的评估模型

  • 基金项目:

    中国地震局地质研究所基本科研业务专项重点项目(IGCEA-1604)资助

  • 摘要: 本文作者旨在建立适用于中国西南地区同震位移的纽马克(Newmark)位移模型,该区域内发生过2008年汶川地震、2013年芦山地震,以及2017年九寨沟地震。基于2008年汶川MW7.9地震期间的33条强震动数据记录,作者对其中的纽马克位移值(Dn),临界加速度(Ac)和阿里亚斯强度(IA)进行了相关性分析,并根据吉布森(Jibson)模型及其演化模型的参数形态,拟合了新的参数,使模型适用于中国西南地区。结果表明:利用新拟合参数的模型具有较高的拟合优度和较小的评估误差。然后,利用2013年MW6.6芦山地震的强震动数据对这些模型评估结果进行验证,证实了具有新拟合参数的模型适用于中国西南地区,并通过对比分析选择出了具有最小评估误差和最大拟合优度的新参数模型:logDn=0.465logIA+12.896AclogIA-22.201Ac+2.092±0.148(R2=0.92),该模型可用于未来中国西南地区的灾害评估。最后,利用该模型对2017年九寨沟MS7.0地震引发的滑坡灾害进行了评估,评估结果与野外调查结果基本一致,显示本文建议的新拟合参数模型应用于中国西南地区地震灾害危险性评估的有效性。本文研究结果还表明:全球评估模型需要根据特定区域的地震地质条件重新拟合模型参数,以获得更好的评估结果。
  • [1]

    Ambraseys,N.,and M.Srbulov(1995).Earthquake induced displacements of slopes,Soil Dynam.Earthq.Eng.14,59-71.
    [2]

    Ambraseys,N.N.,and J.M.Menu(2010).Earth-quake-induced ground displacements,Earthq.Eng.Struct.Dynam.16,no.7,985-1006.
    [3]

    Chen,Q.G.,H.Ge,and H.F.Zhou(2011).Mapping of seismic triggered landslide through Newmark method-An example from study area Yingxiu,Coal Geol.China23,no.11,44-48.
    [4]

    Chen,X.L.,L.Yu,M.M.Wang,and J.Y.Li(2014).Brief communication:Landslides triggered by the MS=7.0 Lushan earthquake,China,Ha-zard Earth Syst.Sci.1,no.4,3891-3918.
    [5]

    Chen,X.L.,R.M.Yuan,and L.Yu(2013).Applying the Newmark's model to the assessment of earthquake-triggered landslides during the Lu-shan earthquake,Seismol.Geol.35,no.3,661-670.
    [6]

    Chousianitis,K.,V.Del Gaudio,I.Kalogeras,and A.Ganas(2014).Predictive model of Arias inten-sity and Newmark displacement for regional scale evaluation of earthquake-induced landslide hazard in Greece,Soil Dynam.Earthq.Eng.65,11-29.
    [7]

    Cui,S.H.,G.H.Wang,X.J.Pei,R.Q.Huang,and T.Kamai(2017).On the initiation and movement mechanism of a catastrophic landslide triggered by the 2008 Wenchuan(MS8.0)earthquake in the epicenter area,Landslides14,no.3,805-819.
    [8]

    Dai,L.X.,Q.Xu,X.M.Fan,M.Chang,Q.Yang,F.Yang,and J.Ren(2017).A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assement,J.Eng.Geol.25,no.4,1151-1164.
    [9]

    Di,B.,C.A.Stamatopoulos,M.Dandoulaki,E.Stavrogiannopoulou,and M.Zhang(2017).A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake,Nat.Hazards85,no.2,903-927.
    [10]

    Ge,H.,Q.G.Cheng,and D.W.Wang(2013).The assessment of mapping of seismic landslide ha-zards:A case study of Yingxiu area,Sichuan Province,Geol.China40,no.2,644-652.
    [11]

    General Administration of Quality Supervision,Inspection and Quarantine of the People's Repub-lic of China(2016).GB50021-2001 Code for Investigation of Geotechnical Engineering,China Architecture & Building Press,Beijing,China.
    [12]

    Gulerce,Z.,and O.Balal(2017).Probabilistic seismic hazard assessment for sliding displacement of slopes:An application in Turkey,Bull.Earthq.Eng.15,no.7,2737-2760.
    [13]

    Holden,C.,and A.Kaiser(2016).Stochastic ground motion modelling of the largest MW5.9+ aftershocks of the Canterbury 2010-2011 earth-quake sequence,New Zealand,J.Geol.Geophys.59,no.1,187-201.
    [14]

    Hsieh,S.Y.,and C.T.Lee(2011).Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration,Eng.Geol.122,nos.1/2,34-42.
    [15]

    Jia,D.,Y.Q.Li,A.M.Lin,M.M.Wang,W.Chen,X.J.Wu,Z.K.Ren,Y.Zhao,and L.Luo(2010).Structural model of 2008MW7.9 Wenchuan earth-quake in the rejuvenated Longmen Shan thrust belt,China,Tectonophysics491,nos.1/4,174-184.
    [16]

    Jibson,R.W.(1993).Predicting earthquake-induced landslide displacements using Newmark's sli-ding block analysis,Transport.Res.Rec.1411,9-17.
    [17]

    Jibson,R.W.(2007).Regression models for esti-mating coseismic landslide displacement,Eng.Geol.91,nos.2/4,209-218.
    [18]

    Jibson,R.W.,E.L.Harp,and J.M.Michael(1998).A method for producing digital probabilistic seis-mic landslide hazard maps:An example from the Los Angeles,California area,U.S.Geol.Surv.Open-File Rept.98-113.
    [19]

    Jibson,R.W.,E.L.Harp,and J.M.Michael(2000).A method for producing digital probabilistic seis-mic landslide hazard maps,Eng.Geol.58,nos.3/4,271-289.
    [20]

    Jibson,R.W.,E.M.Rathje,M.W.Jibson,and Y.W.Lee(2013).SLAMMER:Seismic landslide movement modeled using earthquake records,Techniques and Methods12-B1,U.S.Geological Survey,Reston,Virginia.
    [21]

    Lan,H.X.,C.H.Zhou,X.Gao,W.M.Cheng,Z.H.Wang,Z.H.Yang,L.P.Li,and Y.M.Wu(2013).Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan,Ya'an earthquake,Sichuan Province,Prog.Geogr.32,no.4,499-504.
    [22]

    Lin,Y.M.,H.J.Deng,K.Du,L.Rafay,G.S.Zhang,J.Li,C.Chen,C.Z.Wu,H.Lin,W.Yu,et al.(2017).Combined effects of climate,restoration mea-sures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan earthquake in China,Sci.Total Environ.596,274-283.
    [23]

    Liu,J.M.,M.T.Gao,and S.R.Wu(2016).Probabilistic seismic landslide hazard zonation method and its application.Chin.J.Rock Mech.Eng.35,no.1,3100-3110.
    [24]

    Liu,J.M.,T.Wang,S.R.Wu,and M.T.Gao(2016).New empirical relationships between Arias intensity and peak ground acceleration,Bull.Seismol.Soc.Am.106,no.5,2168-2176.
    [25]

    Massey,C.,F.Della Pasqua,C.Holden,A.Kaiser,L.Richards,J.Wartman,M.J.McSaveney,G.Archibald,M.Yetton,and L.Janku(2017).Rock slope response to strong earthquake shaking,Landslides14,no.1,249-268.
    [26]

    Meunier,P.,N.Hovius,and A.J.Haines(2007).Regional patterns of earthquake-triggered lands-lides and their relation to ground motion,Geophys.Res.Lett.34,L20408,doi:10.1029/2007 GL031337.
    [27]

    Ministry of Housing and Urban-Rural Development of the People's Republic of China,and General Administration of Quality Supervision,Inspec-tion and Quarantine of the People's Republic of China(2014).GB50218T-2014 Standard for engineering classification of rock mass,China Architecture & Building Press,Beijing,China.
    [28]

    Newmark,N.M.(1965).Effects of earthquakes on dams and embankments,Géotechnique15,no.2,139-160.
    [29]

    Pei,X.J.,X.C.Zhang,B.Guo,G.H.Wang,and F.Y.Zhang(2017).Experimental case study of seismically induced loess liquefaction and landslide,Eng.Geol.223,23-30.
    [30]

    Qin,S.W.,Z.J.Ma,X.Liu,G.J.Li,S.Y.Peng,J.J.Chen,and J.J.Zhai(2017).Hazard assessment of collapse and landslide induced by Tianchi volcano in Changbai Mountain area based on simplified Newmark displacement model,J.Jilin Univ.47,no.3,826-838.
    [31]

    Rathje,E.M.,and G.Saygili(2009).Probabilistic assessment of earthquakeinduced sliding displacements of natural slopes,Bull.New Zeal.Soc.Earthq.Eng.41,18-27.
    [32]

    Roback,K.,M.K.Clark,A.J.West,D.Zekkos,G.Li,S.Gallen,D.Chamlagain,and J.W.Godt(2017).The size,distribution,and mobility of landslides caused by the 2015MW7.8 Gorkha earthquake,Nepal,Geomorphology301,121-138.
    [33]

    Sarma,S.K.(1981).Seismic displacement analysis of earth dams,J.Geotech.Geoenvir.Eng.107,no.12,1735-1739.
    [34]

    Sassa,K.,H.Fukuoka,F.Wang,and G.Wang(2005).Dynamic properties of earthquake-induced lar-ge-scale rapid landslides within past landslide masses,Landslides2,no.2,125-134.
    [35]

    Saygili,G.,and E.M.Rathje(2008).Empirical predictive models for earthquake-induced sliding displacements of slopes,J.Geotech.Geoenvir.Eng.134,no.6,790-803.
    [36]

    Sitar,N.,J.P.Bardet,M.L.Lin,J.P.Hu,J.J.Hung,B.Khazai,S.L.Kramer,W.J.Perkins,and R.H.Wright(2001).Landslides:Chi-Chi,Taiwan earthquake of September 21,Earthq.Spectra17,no.S1,61-76.
    [37]

    Stamatopoulos,C.A.(2015).Limit sliding-block seismic displacement for landslide triggering along slip surfaces consisting of saturated sand,Soil Dynam.Earthq.Eng.79,265-277.
    [38]

    Stamatopoulos,C.A.,and B.Di(2015).Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods,Landslides12,no.6,1207-1213.
    [39]

    Wang,T.,S.R.Wu,J.S.Shi,and P.Xin(2013).Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:Wenchuan MS8.0 earthquake,J.Eng.Geol.21,no.1,16-24.
    [40]

    Wang,X.Y.,G.Z.Nie,and S.Wang(2011).Ground motion acceleration criterion for judging landslides induced by the 2008 Wenchuan earthquake,Acta Seismol.Sinica33,no.1,82-90.
    [41]

    Wilson,R.C.,and D.K.Keefer(1983).Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake,California,earthquake,Bull.Seismol.Soc.Am.73,no.3,863-877.
    [42]

    Xu,C.,F.C.Dai,and X.W.Xu(2010).Wenchuan earthquake-induced landslides:An overview,Geol.Rev.56,no.6,860-875.
    [43]

    Xu,C.,X.W.Xu,W.J.Zheng,X.Tan,Z.J.Han,C.Y.Li,M.J.Liang,Z.Q.Li,H.Wang,M.M.Wang,et al.(2013).Landslides triggered by the April 20,2013 Lushan,Sichuan Province MS7.0 strong earthquake of China,Seismol.Geol.35,no.3,641-660.
    [44]

    Xu,X.,X.Wen,Z.Han,G.H.Chen,C.Y.Li,W.J.Zhang,S.M.Zhang,Z.Q.Ren,C.Xu,and X.B.Tan,et al.(2013).Lushan MS7.0 earthquake:A blind reserve-fault event,Sci.Bull.58,nos.28/29,3437-3443.
    [45]

    Xu,X.,X.Wen,G.Yu,G.H.Chen,Y.Klinger,J.Hubbard,and J.Shaw(2009).Co-seismic reverse- and oblique-slip surface faulting generated by the 2008MW7.9 Wenchuan earthquake,China,Geology37,no.6,515-518.
    [46]

    Yin,Y.P.(2008).Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan,J.Eng.Geol.16,no.4,433-444.
    [47]

    Yin,Y.P.(2009).Features of landslides triggered by the Wenchuan earthquake,J.Eng.Geol.17,no.1,29-38.
    [48]

    Yin,Y.P.,B.Li,and W.P.Wang(2015).Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan MS8.0 earthquake and aftershocks,Landslides12,no.3,537-547.
    [49]

    Yu,G.H.,X.W.Xu,G.H.Chen,T.T.Guo,X.B.Tan,H.Yang,X.Gao,Y.F.An,and R.M.Yuan(2009).Relationship between the localization of earthquake surface ruptures and building damages associated with the Wenchuan 8.0 earthquake,Chin.J.Geophys.52,no.12,3027-3041.
    [50]

    Yuan,R.M.,Q.H.Deng,D.Cunningham,C.Xu,X.W.Xu,and C.P.Chang(2013).Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration,Bull.Seismol.Soc.Am.103,no.4,2344-2355.
    [51]

    Yuan,R.M.,Q.H.Deng,C.Dickson,Z.J.Han,D.L.Zhang,and B.L.Zhang(2016).Newmark displacement model for landslides induced by the 2013MS7.0 Lushan earthquake,China,Front.Earth Sci.10,no.4,740-750.
    [52]

    Yuan,R.M.,Q.H.Deng,C.Dickson,Z.J.Han,D.L.Zhang,and B.L.Zhang(2017).Erratum to "Newmark displacement model for landslides induced by the 2013MS7.0 Lushan earthquake,China,"Front.Earth Sci.11,no.1,202-202.
    [53]

    Yuan,R.M.,X.W.Xu,G.H.Chen,X.B.Tan,T.Klinger,and H.L.Xing(2010).Ejection landslide at northern terminus of Beichuan rupture triggered by the 2008MW7.9 Wenchuan earth-quake,Bull.Seismol.Soc.Am.100,no.B5,2689-2699.
    [54]

    Zhang,Z.L.,T.Wang,S.R.Wu,H.Tang,and C.Liang(2017).Seismic performance of loess-mudstone slope in Tianshui-Centrifuge model tests and numerical analysis,Eng.Geol.222,225-235.
  • [1] R. JuanesB. JhaB. H. HagerJ. H. ShawA. PleschL. AstizJ. H. DieterichC. Frohlich田一鸣姬计法张天中 . 2012年5月的艾米利亚-罗马涅地震是否为诱发型地震?耦合流动和地质力学模型评估. 世界地震译丛, 2017, 48(5): 418-425. doi: 10.16738/j.cnki.issn.1003-3238.201705003
    [2] Yongge WanShuzhong ShengJichao HuangXiang LiXin Chen杨帆盛书中朱玉萍 . 基于震源机制解数据反演构造应力张量的网格搜索法及其在中国、越南和老挝边界地区的应用. 世界地震译丛, 2017, 48(2): 169-184. doi: 10.16738/j.cnki.issn.1003-3238.201702004
    [3] J. J. BommerB. DostB. EdwardsP. J. StaffordJ. van ElkD. DoornhofM. Ntinalexis邹立晔赵爱华 . 发展专用于诱发地震活动的地面运动模型. 世界地震译丛, 2019, 50(2): 147-167. doi: 10.16738/j.cnki.issn.1003-3238.201902003
    [4] C. ChiarabbaL. JovaneR. DiStefano杨国栋朱玉萍 . 基于20年仪器记录的意大利地震活动性新见解. 世界地震译丛, 2017, 48(5): 448-464. doi: 10.16738/j.cnki.issn.1003-3238.201705005
    [5] M. FarfourW. J. Yoon赵雷燕云赵龙梅孙宏志李万金 . 新的免费软件:钻孔地震数据处理与解释. 世界地震译丛, 2018, 49(1): 58-72. doi: 10.16738/j.cnkii.ssn.1003-3238.201801006
    [6] Yih-Min WuTing-Li LinWei-An ChaoHsin-Hua HuangNai-Chi HsiaoChien-Hsin Chang张磊吴何珍吕春来 . 利用持续监测滤波后的垂直位移更快速短距离地震预警:2010年台湾甲仙地震典型例子研究. 世界地震译丛, 2014, 45(4): 1-10.
    [7] G. AntonovskayaY. KonechnayaE. O. KremenetskayaV. AsmingT. KværnaJ. SchweitzerF. Ringdal蒲举杨国栋 . 欧洲北极地区的地震强化监测. 世界地震译丛, 2019, 50(3): 201-211. doi: 10.16738/j.cnki.issn.1003-3238.201903001
    [8] Masaki KanaoVladimir D. SuvorovShigeru TodaSeiji Tsuboi刘伟吕春来 . 北极地区的地震活动、结构和构造. 世界地震译丛, 2016, 47(1): 1-21. doi: 10.16738/j.cnki.issn.1003-3238.201601001
    [9] F. BozzoniM. CoriglianoC. G. LaiW. SalazarL. ScandellaE. ZuccoloJ. LatchmanL. LynchR. Robertson杨国栋袁道阳吕春来 . 东加勒比群岛的概率地震危险性评估. 世界地震译丛, 2012, 43(3): 29-58.
    [10] Hosseyn HamzehlooMajid Mahood杨国栋陈瑶田宝峰 . 伊朗中东部地区的地震动衰减关系. 世界地震译丛, 2015, 46(2): 147-159.
    [11] P. ShebalinC. NarteauM. Holschneider李晶吕春来 . 从基于报警到基于比率的地震预报模型. 世界地震译丛, 2014, 45(3): 1-9.
    [12] V. MendelD. SauterC. Rommevaux-JestinP. PatriatF. LefebvreL. M. Parson赵明辉张骥潇丘学林吕春来 . 西南印度洋超慢速扩张洋脊的岩浆-构造旋回:来自轴部火山洋脊地形变化和深海丘陵样式的证据. 世界地震译丛, 2012, 43(3): 59-80.
    [13] M. W. StirlingF. R. Zuniga杨国栋张苏平赵爱华 . 综合地震和地质数据获得的坎特伯雷地震序列的震级-频度分布模型. 世界地震译丛, 2018, 49(6): 592-598. doi: 10.16738/j.cnkii.ssn.1003-3238.201806006
    [14] H. MogiS. S. ManH. KawakamiS. Okamura胡勐乾侯春林吕春来 . 2007年新潟县中越近海地震期间柏崎刈羽核电站垂直阵观测的土的非线性行为. 世界地震译丛, 2012, 43(2): 62-76.
    [15] P. Martínez-GarzónG. KwiatekM. IckrathM. Bohnhoff崔华伟万永革吕春来 . MSATSI:结合可靠经典方法的新简化用户处理及可视化工具的应力反演MATLAB软件包. 世界地震译丛, 2014, 45(4): 34-45.
    [16] Y. Yamashita雷华田一鸣 . 日本东北地区(日本东部大地震的中心和周边地区)的社会重建应如何开始?. 世界地震译丛, 2019, 50(6): 587-591. doi: 10.16738/j.cnkii.ssn.1003-3238.201906008
    [17] S. InguaggiatoJ. M. LondoñoZ. ChacónM. LiottaE. GilD. Alzate王景丽吕春来 . 哥伦比亚马钦火山热液系统:2011~2013年期间观测到的新岩浆信号. 世界地震译丛, 2019, 50(1): 21-34. doi: 10.16738/j.cnki.issn.1003-3238.201901002
    [18] A. McPhersonL. Hall谭颖吕春来 . 澳大利亚地震危险性和灾害风险评估中的场地分类. 世界地震译丛, 2013, 44(3): 32-52.
    [19] S. PailopleeP. ChannarongV. Chutakositkanon李万金吕春来 . 用统计方法研究泰国-老挝-缅甸交界地区的地震活动. 世界地震译丛, 2014, 45(3): 24-32.
    [20] Yan XuDan-Ning LiYang GaoJia-Bin He徐彦吴何珍 . 中国-缅甸边界5个盈江地震序列的重定位及发震断层的研究. 世界地震译丛, 2017, 48(1): 32-47. doi: 10.16738/j.cnki.issn.1003-3238.201701003
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程

中国西南地区纽马克位移新的评估模型

基金项目:  中国地震局地质研究所基本科研业务专项重点项目(IGCEA-1604)资助

摘要: 本文作者旨在建立适用于中国西南地区同震位移的纽马克(Newmark)位移模型,该区域内发生过2008年汶川地震、2013年芦山地震,以及2017年九寨沟地震。基于2008年汶川MW7.9地震期间的33条强震动数据记录,作者对其中的纽马克位移值(Dn),临界加速度(Ac)和阿里亚斯强度(IA)进行了相关性分析,并根据吉布森(Jibson)模型及其演化模型的参数形态,拟合了新的参数,使模型适用于中国西南地区。结果表明:利用新拟合参数的模型具有较高的拟合优度和较小的评估误差。然后,利用2013年MW6.6芦山地震的强震动数据对这些模型评估结果进行验证,证实了具有新拟合参数的模型适用于中国西南地区,并通过对比分析选择出了具有最小评估误差和最大拟合优度的新参数模型:logDn=0.465logIA+12.896AclogIA-22.201Ac+2.092±0.148(R2=0.92),该模型可用于未来中国西南地区的灾害评估。最后,利用该模型对2017年九寨沟MS7.0地震引发的滑坡灾害进行了评估,评估结果与野外调查结果基本一致,显示本文建议的新拟合参数模型应用于中国西南地区地震灾害危险性评估的有效性。本文研究结果还表明:全球评估模型需要根据特定区域的地震地质条件重新拟合模型参数,以获得更好的评估结果。

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回